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Abstract
A simplified version of a time-dependent annular billiard is studied. The
dynamics is described using nonlinear maps and we consider two different
configurations for the billiard, namely (i) concentric and (ii) eccentric cases.
For the concentric case and for a null angular momentum, we confirm that
the results for the Fermi–Ulam model are recovered and the particle does not
experience the phenomenon of Fermi acceleration. However, on the eccentric
case the particle demonstrates unlimited energy gain and Fermi acceleration is
therefore observed.

PACS numbers: 05.45.−a, 05.45Pq, 05.45.Gg

1. Introduction

Dynamical systems described by nonlinear mappings have been studied and characterized by
many authors during the past few years. An overview of a wide attention in this field can
be found in [1–3]. A special area that has been extensively investigated on these systems
is particularly related to the so-called conservative billiards problems. Generally, a billiard
is defined by a connected region Q ⊂ RD , with boundary ∂Q ⊂ RD−1 which separates Q
from its complement. Inside the billiard, a point particle moves freely along a straight line
until it hits a boundary. After the collision, it is also assumed that the particle is specularly
reflected, in the sense that the incidence angle is equal to the reflection angle. Depending
on the shape of the boundary, the dynamics of the particle might generate phase spaces of
different kinds, including (i) regular, (ii) ergodic and (iii) mixed. The integrability of the
regular cases, in general, appears due to the angular momentum preservation. On the other
hand, in ergodic billiards, only chaotic and unstable periodic orbits are present in the dynamics
and the so-called Bunimovich stadium [4, 5] consists of a typical example. In this system, the
evolution of a single initial condition fills ergodically the entire phase space. Finally, there is
a representative number of billiards that present the mixed phase space structure [6–9], which
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have control parameters with different physical significance. Depending on the combination
of both initial conditions and control parameters, the phase space present a very rich structure
which contains invariant spanning curves, Kolmogorov–Arnol’d–Moser (KAM) islands and
chaotic seas.

There is a special allusion that might consider the boundary of a billiard as an infinite
potential barrier. See, for example, [10] for recent results and scaling analysis for a classical
particle in an infinite potential containing a time varying barrier. For static boundary, the
particle’s initial energy is always a constant. However, complex dynamics including energy
and time may appear when a time periodic varying boundary is introduced. The main question
to be answered is whether the system demonstrates unlimited energy gain, i.e. the basic
condition for observing the phenomenon of Fermi acceleration [11]. Recently, Loskutov,
Ryabov and Akinshin [12] studied specific billiards and on the basis of their results they
have announced a conjecture (LRA-conjecture) that says a chaotic dynamics for a billiard
with static boundary is a sufficient condition for the Fermi acceleration in the system when
a time perturbation is introduced on the boundary. In connection with this conjecture, there
has been a deep analysis of time-dependent stadium-like billiards [13] and we have studied
a complete version of the annular billiard and, moreover, enlarged the number of cases for
which such a conjecture has been applied with entire success [14]. Our main goal however in
this paper is to introduce, for the first time, a simplified version of a time-dependent annular
billiard. Historically, simplifications of moving boundaries in mappings are specially due to
the seminal paper of Lieberman and Lichtenberg [15] where they develop a simplified version
for the Fermi accelerator model. Since then, many other different models use basically the
same approximation [16–23] and recently, Leonel and McClintock [24] proposed a hybrid
version of both the Fermi–Ulam accelerator and bouncer models. The system behaves neither
exclusively as pure Fermi–Ulam nor as a pure bouncer model, but as a combination of the
two. They have used the simplified version of the model to obtain analytically the conditions
for which properties that are individually present in the Fermi–Ulam and bouncer model but
that come out and coalesce together in the hybrid version of the model.

This paper is organized as follows. In section 2, we present and discuss all the details
needed for the construction of the mappings for the simplified version of the time-dependent
annular billiard. In section 3, we present and discuss the numerical results while conclusion
and final remarks are drawn in section 4.

2. A simplified version of a time-dependent annular billiard

It is well known that the annular billiard consists of a classical particle confined in an annular
region limited by two circumscribed circles. The particle thus evolves in the ring between the
two circles and suffers elastic collisions with the boundaries. We therefore introduce in this
section a simplified version of the time-dependent annular billiard [14]. In a similar way as
introduced by Lieberman and Lichtenberg [15], a simplified version of the model considers
that both the internal and external boundaries are fixed, but that, after the particle collides
with them, suffers a change in its velocity as if the boundaries were moving. With these
simplifications, the instant of the impact, that in the complete version were obtained from
solutions of transcendental equations, now are easily and directly obtained from, at most,
second degree polynomial equations. Although this strategic simplification brings the huge
advantage of allowing us speed up the numerical simulations, it also gives rise to a problem
that we need necessarily to avoid. In the complete version, depending on the combination
of both the velocity of the particle and phase of the moving boundary, it is possible for a
particle, after suffering a collision with the boundary, suffers a second and successive collision
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(b)(a)

Figure 1. A geometric scheme of a particle in the model of the simplified time-dependent annular
billiard: (a) type A movement and (b) type B movement.

before it leaves the collision area. It is also possible for a particle suffering further successive
collisions and also having a positive (negative) radial velocity after the collision with the
external (internal) boundary. In our simplified version however, successive collisions are
forbidden because they would be interpreted as an equivalent to the particle moving beyond
the boundaries. Therefore, after a collision with the external (internal) boundary, the particle
has a positive (negative) radial velocity, we inject it back with same modulus of radial velocity.

Let us now construct the map. The derivation of the mapping follows, in part, the same
general procedures as used in [12]. We thus define the radius of the outer circle as R = 1,
while for the inner circle, it is denoted by r. The eccentricity, defined as the distance between
the centres of both circles, is represented by d. See figure 1 for a typical illustration of the
annular billiard for the two possible types of movements. We also use the constraint r + d < 1.

The dynamics is described using a nonlinear map M(θn, αn, vn, ϕn, φn) =
(θn+1, αn+1, vn+1, ϕn+1, φn+1), where n denotes the nth collision with the external boundary.
The variable αn is defined as the incidence angle and it is always measured with respect to the
normal at the point of the impact. By convention, αn is positive if measured counterclockwise
and negative if clockwise. The corresponding range for αn ∈ [−π/2, π/2]. The variable θn

gives the position of the particle on the boundary and it is considered, by convention, to be
positive if measured counterclockwise and negative if measured clockwise. The range for θn

is θn ∈ [−π, π ]. The variable vn denotes the velocity of the particle while both ϕn and φn are
the phases that will be used in the corresponding exchanges of momentum with the external
and internal boundaries, respectively.

Supposing that after suffering a collision with the external boundary, the position of the
particle, in rectangular coordinates are given by xn = cos(θn) and yn = sin(θn), the velocity,
written in polar coordinates are vnη = −vn cos(αn) and vnτ = vn sin(αn), where the index η

represents the normal component of the velocity (the unit vector is defined as pointing outside)
and τ denotes the tangential component of the velocity. Moreover, in rectangular Cartesian
coordinates, the velocity is given by

vnx = vnη cos(θn) − vnτ sin(θn), vny = vnη sin(θn) + vnτ cos(θn).

The two possible kinds of movements (see figure 1) are obtained from the tangency condition
[25, 26]

|sin(αn) − d sin(θn − αn)| > r. (1)
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If the combination of both θn and αn are such that condition (1) is satisfied, then we have a
movement of type A, otherwise the movement is of type B. Let us first discuss the type A.

Type A The particle does not hit the internal boundary.

If the particle does not collides with the internal circle, then the next collision will be
with the external boundary. The position of the particle in the external circle, in rectangular
Cartesian coordinates, is given by xn+1 = cos(θn+1) and yn+1 = sin(θn+1) with

θn+1 = θn + π − 2αn.

We can define the flight time between the two collisions evaluating the equation

tf = 	S

vn

=
√

(xn+1 − xn)2 + (yn+1 − yn)2

vn

.

Immediately before the collision with the external boundary and considering polar coordinates,
the components for the velocity of the particle are written as

vnη = vnx cos(θn+1) + vny sin(θn+1), vnτ = −vny sin(θn+1) + vny cos(θn+1).

After the impact and according to our definition of the simplified version, the new component
of the radial velocity is given by

v(n+1)η = −| − vnη − 2εR sin(tf + ϕn)|, v(n+1)τ = vnτ .

In the complete version, εR represents the amplitude of oscillation of the external moving
boundary. By definition of the simplified version, we have assumed that both the boundaries
are fixed but the particle suffers an exchanges of momentum after the collision as if the
boundaries were moving. Then the expression for the velocity of the particle is the same as
the one used in the complete version, except for the module function, which is particular of
the simplified model. We emphasize however that the module is an artificial strategy used to
avoid the particle moving beyond the boundary. After the collision, the new velocity is then
represented as vn+1 =

√
v2

(n+1)η + v2
(n+1)τ . Finally, the corresponding phases and reflection

angle are

ϕn+1 = ϕn + tf , mod 2π

φn+1 = φn + ωtf , mod 2π

αn+1 = arctan

[
−v(n+1)τ

v(n+1)η

]
.

We now discuss the situation where condition (1) is not matched.

Type B In this case, after the particle collides with the external boundary, it hits necessarily
the internal circle.

To avoid confusion, we emphasize that the index ‘n’ counts the hits with the outer circle.
Even then, we keep it in the variables when the particle hits the inner circle too. However,
the iterations of the map are computed only when the external boundary is reached. The
rectangular Cartesian coordinates of the particle in the instant of the impact with the internal
circle are given by

xr = r cos(θb) − d, yr = r sin(θb),

with θb = β + θn − αn and β obtained from

sin(β) = 1

r
[sin(αn) − d sin(θn − αn)] .
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The flight time, up to the internal boundary, is then

tf = 	S

vn

=
√

(xr − xn)2 + (yr − yn)2

vn

, (2)

where vn is the velocity of the particle before the collision, and the corresponding polar
components of the velocity are given by

vr
nη = vnx cos(θb) + vny sin(θb), vr

nτ = −vnx sin(θb) + vny cos(θb).

In the referential frame of the internal circle, only the radial component of the velocity changes.
In this way, immediately after the collision with the internal boundary, the corresponding
expressions are

vr
(n+1)η = |−vr

nη − 2εrω sin(ωtf + φn)|, vr
(n+1)τ = vr

nτ . (3)

The upper index r indicates that the position of the particle is measured on the internal circle.
A similar discussion holds here for the variable εr . On the complete version, it denotes
the amplitude of oscillation of the internal time varying boundary. Therefore, it is assumed
that, after the impact, the expression of the particle’s velocity is the same as that used in the
complete model. Again, we stress that the module function is introduced to avoid the particle
moving into forbidden regions. The frequency ω in fact represents the radio of the internal
and external oscillating frequencies. See [14] for a full discussion. After the collision, the
particle goes straight to the external boundary located at R = 1. The collision then happens
if the position of the particle is equal to the position of the external circle, i.e.

Rp(t) = 1, (4)

where Rp(t) denotes the module vector radius of the particle, which is given by Rp(t) =√(
x2

r + y2
r

)
+ 2(xrvx + yrvy)t +

(
v2

x + v2
y

)
t2 where the velocities are obtained from

vx = vr
(n+1)η cos(θb) − vr

(n+1)τ sin(θb),

vy = vr
(n+1)η sin(θb) + vr

(n+1)τ cos(θb).

With these definitions, condition (4) might be written as(
v2

x + v2
y

)
t2 + 2(xrvx + yrvy)t +

(
x2

r + y2
r

) − 1 = 0.

The largest solution of the above equation, we call it as tc, gives the time that the particle
spends after a collision with the internal circle until it reaches the external boundary. The
corresponding new rectangular Cartesian coordinates for the particle are

xn+1 = xr + vxtc, yn+1 = yr + vytc.

The new angle θn+1 is obtained from the equation

θn+1 = arctan

[
yn+1

xn+1

]
,

and the corresponding components of the particle’s velocity immediately before the impact
with the outer circle are

vnη = vx cos(θn+1) + vy sin(θn+1),

vnτ = −vx sin(θn+1) + vy cos(θn+1).

After the collision, only the radial component of the velocity is changed and as we have
discussed for the simplified version, the expressions are

v(n+1)η = −| − vnη − 2εR sin(tc + tf + ϕn)|, v(n+1)τ = vnτ .
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The module function is introduced to maintain the position of the particle inside the external
boundary. Finally, the corresponding new velocity is written as vn+1 =

√
v2

(n+1)η + v2
(n+1)τ . The

corresponding phases are

ϕn+1 = ϕn + tc + tf , mod 2π

φn+1 = φn + ω(tc + tf ), mod 2π.

On the basis of the expressions of the mappings, we are now able to present and discuss the
numerical results.

3. Numerical results

We discuss in this section the results obtained for our simplified version of the annular billiard.
First, the concentric case is considered and second the results for the eccentric case are
presented and discussed.

3.1. Concentric case

On the concentric case, the control parameter d is fixed as d = 0. As a similar discussion for
the complete version (see [14]), the initial condition αn is obtained from the equation

sin(αn) = l

(1 + εR cos(ϕn))vn

,

where there is a special range of values for the angular momentum l. For large enough values
of l, the particle suffers collision with the internal circle only for the regime of high energy.
We therefore set the range of l as l ∈ [0, εR]. For l = 0, our model recovers all the results of
the Fermi–Ulam accelerator model [1]. The upper limit εR denotes the maximum value of the
velocity for the corresponding complete version of the model with external moving boundary.

To illustrate the validity of the model, we show in figure 2 the corresponding phase
space, in the variables (−vη, ϕ), for different configurations of control parameters and initial
conditions. It is easy however to see in figure 2 that the mixed structure of the phase space
is present. For the regime of low energy, the iteration of a single initial condition is enough
to fill the chaotic area. In addition, KAM islands are present and, sometimes, they are also
surrounded by the chaotic sea. Moreover, the phenomenon of Fermi acceleration is not
observed mainly due to the presence of a set of invariant spanning curves which limit the size
of the chaotic sea.

The presence of invariant spanning curves necessarily implies that the chaotic sea presents
a typical value for the average velocity. It might be averaged both as a function of an
ensemble of different initial conditions and over the orbit. Consequently, starting from very
low values of the velocity and averaging it over the orbit, we can see that (see figure 3)
the velocity grows for low iteration number and then after a changeover, the curve of the
average velocity bends towards a regime of saturation. Such a regime is only reached for long
enough iterations. The behaviour of the average velocity as function of the iteration number
for different configurations is shown in figure 3. The control parameters used are r = 0.5,
εR = {0.01, 0.001} and (a) εr = εR , ω = 0.5, ϕ0 − φ0 = 0; (b) εR = εr , ω = 2, ϕ0 − φ0 = 0;
(c) εR = εr(

√
5 + 1)/2, ω = (

√
5 + 1)/2 and ϕ0 − φ0 = (

√
5 + 1)/2.

We have also studied the behaviour of the average velocity and maximum value for the
velocity on the chaotic sea as function of ω. The angular frequency however appears explicitly
on the expression of the velocity of the particle after it suffers a collision with the internal
boundary. Therefore, an increase in ω also implies an increase in the maximum value for the



Fermi acceleration on the annular billiard 3567

(a) (b)

(c) (d )

Figure 2. Phase space for the simplified version of the time-dependent, concentric (d = 0)

annular billiard on the variables (−vη, ϕ). The control parameters used were r = 0.5, ω = 1 and:
(a) εR = εr = 0.01, l = 0.01 and ϕ0 − φ0 = 0; (b) εR = εr = 0.01, l = 0.01 and ϕ0 − φ0 = π ;
(c) εR = 0.1, εr = 0.01, l = 0.1 and ϕ0 − φ0 = 0; (d) εR = 0.01, εr = 0.1, l = 0.1 and
ϕ0 − φ0 = 0.

velocity in a chaotic orbit for the regime of low energy. Since an increase in ω implies an
increase of the exchange of momentum (see equation (3)), it is expected that the position of
the lowest invariant spanning curve will also rise. The behaviour of both the maximum and
medium velocities as function of ω is shown in figure 4. The medium velocity was obtained as
follows: we iterate an ensemble of 103 different initial conditions along 106 iterations. Then,
the curve approaches the saturation; we have obtained the saturation value for different values
of ω used. The maximum value of the velocity however is collected numerically for a long
run with an initial condition in the chaotic low energy region.

Let us now discuss the origin of the linear behaviour for the maximum velocity as function
of the angular frequency ω (see figure 4). We will consider that our model, in the neighbouring
of the lowest invariant spanning curve (around −vη

∼= 0.23 for figure 2(a)), is locally described
via the standard map [1]

In+1 = In + K sin(n), n+1 = n + In+1, mod 2π.

It is well known that the standard model presents a transition for K ≈ 0.97 . . . . For
K � 0.97 . . . the phase space presents invariant spanning curves which limit the size of
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(a)

(c)

(b)

Figure 3. Behaviour of the average velocity as function of the iteration number for the
concentric case. The control parameters used are r = 0.5 and εR = {0.01, 0.001} and
(a) εr = εR, ω = 0.5, ϕ0 − φ0 = 0; (b) εR = εr , ω = 2 and ϕ0 − φ0 = 0; (c) εr = εR(

√
5 + 1)/2,

ω = (
√

5 + 1)/2 and ϕ0 − φ0 = (
√

5 + 1)/2.

Figure 4. Velocity as function of ω. The control parameters used were r = 0.5, εr = 0.01, εR =
εr (

√
5 + 1)/2, ϕ0 − φ0 = (

√
5 + 1)/2.

the chaotic sea. Therefore, for K > 0.97 . . . , the invariant spanning curves are completely
destroyed. Our approach consists in determining, for the present version of the model,
an effective constant Keff which approximately locates the position of the lowest invariant
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spanning curve. We will consider, without loss of generality, the expression of the velocity
immediately after the collision with the internal boundary, vn+1, which is written as

v2
n+1 = v2

(n+1)η + v2
(n+1)τ .

The main reason for using the internal boundary is that the angular frequency ω appears
explicitly on the expression of exchange of velocity. Using equation (3), the above expression
is rewritten according to

v2
n+1 = (−vnη − 2εrω sin(φn+1))

2 + v2
nτ . (5)

For simplicity, we have omitted the upper index ‘r’. In a more appropriate form, equation (5)
is

v2
n+1 = v2

n + 4εrω sin(φn+1)[vnη + εrω sin(φn+1)], (6)

where v2
n = v2

nη +v2
nτ . We suppose that, in the invariant spanning curve, the velocity is given as

vn = v∗ + 	vn, where v∗ represents a typical value in the spanning curve and 	vn denotes its
corresponding range of oscillation. On the basis of this supposition the phase φn+1 is written,
using equation (2), as

φn+1 = φn + ω
	d

v∗

(
1 +

	vn

v∗

)−1

. (7)

It is worth mentioning that the corresponding range of possible values for 	d is

	d ∈ [(1 − εR) − (r + εr), (1 + εR) − (r − εr)].

Expanding equation (7) and taking only terms of first order in 	vn/v
∗, we obtain

φn+1 = φn + ω
	d

v∗ − ω	d
	vn

v∗2 . (8)

Equation (8) allows us now to define the variable In as

In = ω
	d

v∗ − ω	d
	vn

v∗2 .

Let us then use the expression vn = v∗ + 	vn on equation (6). It is moreover written as

(v∗ + 	vn+1)
2 = (v∗ + 	vn)

2 + 4εrω sin(φn+1)[vnη + εrω sin(φn+1)]. (9)

Expanding both the squares and taking only term of first order for 	vn/v
∗, equation (9)

becomes

	vn+1 = 	vn +
2εrω

v∗ sin(φn+1)[vnη + εrω sin(φn+1)]. (10)

Multiplying both sides by −ω	d/v∗2 and adding ω	d/v∗, respectively, equation (10)
becomes

In+1 = In − 2εrω
2	d

v∗3 sin(φn+1)[vnη + εrω sin(φn+1)]. (11)

Let us now discuss the limits for the term inside the brackets in equation (11). Near the
lowest invariant spanning curve we will suppose that the term vnη + εrω sin(φn+1)

∼= v∗. Such
a supposition is entirely confirmed in figure 5. It is shown in figure 5(a) the behaviour of the
total velocity (vn × n) while figure 5(b) presents the results of ([vnη + εrω sin(φn+1)] × n). It
is important to stress however that the approximation via the standard map is valid only for
values of velocities close to those shown in the invariant spanning curve (around v ≈ 0.23 in
figure 6). In this limit, vn

∼= v∗ ∼= vnη + εrω sin(φn+1). According to the above discussion, we
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(a) (b)

Figure 5. (a) Total velocity as a function of the collision number on the internal boundary. (b) The
term in the brackets of equation (11) as function of the collision number on the internal boundary.
The control parameters used in both figures were r = 0.5, d = 0, ω = 1, εR = εr = 0.01 and
l = 0.01.

can define a new n = φn+1 + π , and obtain an effective constant Keff for our description of
the problem as

Keff = 2εrω
2	d

v∗2 .

Hence, the equations of the standard map are recovered with Keff in the place of K.
Moreover, around the transition on the standard map, the constant K assumes the value

K ≈ 0.97 . . . . Considering such a value for our results and assuming that vmax can now be
approximate to v∗ (this approximation is valid only if 	vn is small enough), the expression
for the maximum velocity is then given by

vmax =
√

2εr	d

0.97 . . .
ω.

Therefore, our main conclusion of this discussion is that vmax ∝ ω, which is an analytical
explanation for the behaviour observed in figure 4.

We stress that the mixed phase space structure can be seen in the variables (vn × ϕn),
as is shown in figure 6, where vn is the total velocity before the collision with the inner
circle. The corresponding control parameters used in the construction of this figure were
r = 0.5, d = 0, ω = 1, εR = εr = 0.01 and l = 0.01.

There are two main conclusions that we can extract from the results discussed in this
section. The first of them is that, even considering a simplified version, our results reinforce
the LRA-conjecture [12]. For the static version of the concentric case, it is well known that
the system is integrable. The introduction of the time dependence on the exchange of velocity
however does not imply that the particle will present unlimited energy gain. Such results
are clearly shown in figures 3 and 4. The second conclusion refers to the connection of the
standard map with our simplified version of the time-dependent annular billiard in order to
describe locally the dynamics of the chaotic sea close the lowest invariant spanning curve. We
have used our simplified version for explaining analytically the behaviour of the maximum
value for the velocity in the chaotic sea for low energy domain. We will now discuss the
eccentric case.
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Figure 6. Phase space on the variables vn × ϕn. The mixed structure is also present and it is easy
to compare the maximum value of the velocity on the chaotic sea as those shown in figures 5(a)
and (b). The control parameters used were r = 0.5, d = 0, ω = 1, εR = εr = 0.01 and l = 0.01.

(a) (b)

Figure 7. Behaviour of the average velocity as function of the iteration number for the
eccentric case. The control parameters used were r = 0.05, d = 0.65, εR = 0.01, v0 =
{2εr , 10εR, 100εR, 1000εR} and (a) ω = 1, εr = εR ; (b) εr = εR(

√
5 + 1)/2 and ω = (

√
5 + 1)/2.

3.2. Eccentric case

Let us now discuss our numerical results obtained for the eccentric case. For easier
comparisons with the results of the complete version of the model we will consider only
two sets of control parameters as those used in [14], as can be seen in figure 7. The behaviour
of the average velocity as function of the iteration number is shown in figure 7. We have
evolved up to 107 iterations, an ensemble of 103 different initial conditions. The initial
velocities are shown in figure 7 but the phases were uniformly distributed between ϕ0 and
φ0 ∈ [0, 2π ].

The main conclusion for this section is that, even using our simplified model, the system
presents the phenomenon of Fermi acceleration. We stress that for the static version of
the model, the system has a mixed structure for the phase space. The introduction of time
dependency does imply that the phenomenon of Fermi acceleration is then observed, according
to the LRA-conjecture [12].
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4. Final remarks and conclusions

We have proposed and studied for the first time, a simplified version of the time-dependent
annular billiard under two different configurations: (i) concentric and (ii) eccentric cases. In
the static case it is well known that the annular billiard is integrable if the circles are concentric
and it presents mixed phase space structure if they are eccentric. The system is described
by nonlinear mappings and we have shown that for the time-dependent concentric case, the
phase space is of mixed kind for the variables (vη, ϕ) and also for (vtotal, ϕ). Therefore, the
Fermi acceleration does not occur. In addition, we have derived an analytical expression that
describes the behaviour of the maximum velocity as function of the angular frequency ω at
energies (velocities) near the energy of the lowest spanning curve (−vη ≈ 0.23 in figures 2(a)
and 6). Consequently, in this neighbourhood the system is well represented by a standard
maplike. On the other hand, for the eccentric case the Fermi acceleration is observed, which
reinforces the LRA-conjecture [12], and it consists in our main conclusion in this paper. The
introduction of a simplified version of the time-dependent annular billiard is also in total
agreement with the exact results obtained from the complete version of this billiard (see [14]
for a full discussion).

Finally, we also would like to point out that for very small eccentricities (the static case
is non-integrable) the Fermi acceleration was not observed, for the set of control parameters
we have used. Moreover, we evaluate that if the time-dependent perturbation was sufficiently
increased the Fermi acceleration might be observed. This question will be considered in a
future paper.

Acknowledgments

This research was partially supported by the scientific Brazilian agencies, Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico–CNPq and Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior–CAPES.

References

[1] Lichtenberg A J and Lieberman M A 1992 Regular and Chaotic Dynamics (Applied Mathematical Science
vol 38) (New York: Springer)

[2] Guckenheimer J and Holmes P 2000 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector
Fields (Appl. Math. Sci. vol 42) (New York: Springer)

[3] Bai-Lin H 1990 Chaos II (Singapore: World Scientific)
[4] Bunimovich L A 1974 Math. USSR Sb. 23 45
[5] Bunimovich L A 1979 Commun. Math. Phys. 65 295
[6] Berry M V 1981 Eur. J. Phys. 2 91
[7] Kamphorst S O and Carvalho S P 1999 Nonlinearity 12 1363
[8] Robnik M 1983 J. Phys. A: Math. Gen. 16 3971
[9] Robnik M and Berry M V 1985 J. Phys. A: Math. Gen. 18 1361

[10] Leonel E D and McClintock P V E 2005 Chaos 15 033701
[11] Fermi E 1949 Phys. Rev. 75 1169
[12] Loskutov A, Ryabov A B and Akinshin L G 2000 J. Phys. A: Math. Gen. 33 7973
[13] Loskutov A and Ryabov A 2002 J. Stat. Phys. 108 995
[14] Egydio de Carvalho R, Caetano de Souza F and Leonel E D 2006 Fermi acceleration on the annular billiard

to appear
[15] Lieberman M A and Lichtenberg A L 1972 Phys. Rev. A 5 1852
[16] Holmes P J 1982 J. Sound Vib. 84 173
[17] Tsang K Y and Lieberman M A 1984 Physica D 11 147
[18] Everson R M 1986 Physica D 19 355

http://dx.doi.org/10.1070/SM1974v023n01ABEH001713
http://dx.doi.org/10.1007/BF01197884
http://dx.doi.org/10.1088/0143-0807/2/2/006
http://dx.doi.org/10.1088/0951-7715/12/5/310
http://dx.doi.org/10.1088/0305-4470/16/17/014
http://dx.doi.org/10.1088/0305-4470/18/9/019
http://dx.doi.org/10.1063/1.1941067
http://dx.doi.org/10.1103/PhysRev.75.1169
http://dx.doi.org/10.1088/0305-4470/33/44/309
http://dx.doi.org/10.1023/A:1019735313330
http://dx.doi.org/10.1103/PhysRevA.5.1852
http://dx.doi.org/10.1016/0022-460X(82)90215-2
http://dx.doi.org/10.1016/0167-2789(84)90440-8
http://dx.doi.org/10.1016/0167-2789(86)90064-3


Fermi acceleration on the annular billiard 3573

[19] Lieberman M A and Tsang K Y 1985 Phys. Rev. Lett. 55 908
[20] Tsang K Y and Lieberman M A 1986 Physica D 21 401
[21] Tsang K Y and Ngai K L 1997 Phys. Rev. E 56 R17
[22] Leonel E D, da Silva J K L and Kamphorst S O 2004 Physica A 331 435
[23] Leonel E D, McClintock P V E and da Silva J K L 2004 Phys. Rev. Lett. 93 014101
[24] Leonel E D and McClintock P V E 2005 J. Phys. A: Math. Gen. 38 823
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